

UNIVERSITY OF MICHIGAN

Introduction

Real-world task distributions are often multimodal

- Have a rich structure (e.g. multiple modes)
- Some knowledge can be transferable across modes/tasks

Model-agnostic meta-learning (MAML) [1]

• Seek a common initialization parameter for all the modes

An ensemble of MAMLs (Multi-MAML)

- Mode labels are often not available
- Prevent sharing related knowledge among modes/tasks

Background

Model-Agnostic Meta-Learning [1]

 Meta-learn a parameter initialization that can be fine-tuned for new tasks in few gradient update steps

Model-Agnostic Meta-Learning Objective

- Inner loop $\theta_{\mathcal{T}_i}' = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_j}(f(x,\theta); \mathcal{D}_{\mathcal{T}_i}^{\text{train}})$
- Outer loop $\theta' = \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_j \sim P(\mathcal{T})} \mathcal{L}_{\mathcal{T}_j}(f(x, \theta'_{\mathcal{T}_j}); \mathcal{D}_{\mathcal{T}_j}^{val})$

[1] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." in International Conference on Machine Learning 2017

Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation

Risto Vuorio*

Shao-Hua Sun*

Our Approach

Intuition

- Modulation network: identify task modes and modulate the initialization accordingly
- Task network: further gradient adaptation via MAML steps

Modulation Network

Outer loop

- Task Encoder: produce the task embedding
- MLPs: modulate the task network blocks
- Inner loop
- Task network: fast adapt through gradient updates

Experiment - Regression

Method	2 Modes		3 Modes		5 Modes	
	Post Modulation	Post Adaptation	Post Modulation	Post Adaptation	Post Modulation	Post Adaptation
MAML [8]	-	1.085	-	1.231	-	1.668
Multi-MAML	-	0.433	-	0.713	-	1.082
LSTM Learner	0.362	-	0.548	-	0.898	-
Ours: MMAML (Softmax) Ours: MMAML (FiLM)	1.548 2.421	0.361 0.336	2.213 1.923	0.444 0.444	2.421 2.166	0.939 0.868

Hexiang Hu

Alg	orithm 1 MMAML META-TRAINING PROCEDURE.
1:	Input: Task distribution $P(\mathcal{T})$, Hyper-parameters α and β
2:	Randomly initialize θ and ω .
3:	while not DONE do
4:	Sample batches of tasks $\mathcal{T}_j \sim P(\mathcal{T})$
5:	for all j do
6:	Infer $v = h(\{x, y\}_K; \omega_h)$ with K samples from $\mathcal{D}_{\mathcal{T}_i}^{\text{train}}$.
7:	Generate parameters $\tau = \{g_i(v; \omega_g) \mid i = 1, \cdots, N\}$
	to modulate each block of the task network f .
8:	Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_j}(f(x; \theta, \tau); \mathcal{D}_{\mathcal{T}_j}^{\text{train}})$ w.r.t the K samples
9:	Compute adapted parameter with gradient descent:
	$\theta_{\mathcal{T}_{i}}^{\prime} = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{j}} \left(f(x; \theta, \tau); \mathcal{D}_{\mathcal{T}_{i}}^{\text{train}} \right)$
10:	end for
11:	Update θ with $\beta \nabla_{\theta} \sum_{T_j \sim P(\mathcal{T})} \mathcal{L}_{\mathcal{T}_j} (f(x; \theta', \tau); \mathcal{D}_{\mathcal{T}_j}^{val})$
12:	Update ω_g with $\beta \nabla_{\omega_g} \sum_{T_j \sim P(\mathcal{T})} \mathcal{L}_{\mathcal{T}_j} (f(x; \theta', \tau); \mathcal{D}_{\mathcal{T}_j}^{val})$
13:	Update ω_h with $\beta \nabla_{\omega_h} \sum_{T_j \sim P(\mathcal{T})} \mathcal{L}_{\mathcal{T}_j} (f(x; \theta', \tau); \mathcal{D}_{\mathcal{T}_j}^{val})$
	end while

Parameters ω_g ω_h

 θ

Joseph J. Lim

(3	a) On	nniglo	ot			
Ŗ	Ē	¥	E			
-بې	(1)	ト	ų			
ઉ	শ	ĸ	<u> </u>			
Ś	肼明	\mathcal{S}	8			
Р	Ħ	O	Я			
ៗ	0	ß	ىر			
Method & Setup						
	Way					
	•					

Method & Setup		2 Modes		3 Modes			5 Modes		
Way		5-way		5-way		20-way	5-way		20-way
Shot	1-shot	5-shot	1-shot	1-shot	5-shot	1-shot	1-shot	5-shot	1-shot
MAML [8]	66.80%	77.79%	44.69%	54.55%	67.97%	28.22%	44.09%	54.41%	28.85%
Multi-MAML	66.85%	73.07%	53.15%	55.90%	62.20%	39.77 %	45.46%	55.92%	33.78%
MMAML (ours)	69.93 %	78.73 %	47.80%	57.47 %	70.15 %	36.27%	49.06 %	60.83 %	33.97 %

Experiment - Reinforcement Learning

(a) Regression

Experiment - Classification

POINT MASS 2D			REACHER	ANT			
odes	4 Modes	6 Modes	2 Modes	4 Modes	6 Modes	2 Modes	4 Modes
$^{\pm 20}_{\pm 6}$	$-523 \pm 51 \\ -109 \pm 6$	$-330 \pm 10 \\ -92 \pm 4$	$-12 \pm 2.0 \\ -4.3 \pm 0.1$	$-13.8 \pm 2.5 \\ -4.3 \pm 0.1$	$-14.9 \pm 2.9 \\ -4.3 \pm 0.1$	$-761 \pm 48 \\ -624 \pm 38$	$-953 \pm 46 \\ -611 \pm 31$
± 8	-209 ± 32	-169 ± 48	-10.0 ± 1.0	-11.0 ± 0.8	-10.9 ± 1.1	-711 ± 25	-904 ± 37

(d) RL Point Mass